Forecasting - Modelowanie szeregów czasowych z językiem Python

2550 PLN+23% VAT (3136 PLN brutto / 1 os.)

Czas trwania szkolenia:3 dni (24h)

Kod kursu:TS/ML

Poziom zaawansowania:

Dostępne terminy

  • Termin
  • Trener
  • Cena
  • Zapis
  • Lokalizacja

Termin:

9 wrzesień
Trwają zapisy na szkolenie

Trener:

Trener-Sages

Cena:

2550 PLN netto+23% VAT

Lokalizacja:

Zdalne
Zdalne

Interesuje Cię szkolenie stacjonarne lub nie odpowiada Ci żaden z dostępnych terminów?

Ikona pytaniaZapytaj o szkolenie

O szkoleniu Forecasting - Modelowanie szeregów czasowych z językiem Python

W cenie otrzymasz:

  • Materiały szkoleniowe
  • Certyfikat ukończenia szkolenia
  • W przypadku szkolenia w trybie stacjonarnym zapewnimy Ci również lunch oraz sprzęt niezbędny do nauki

Dla kogo?

  • Analityków danych, którzy chcą rozpocząć pracę z szeregami czasowymi
  • Specjalistów data science, którzy chcą rozszerzyć swoje kompetencje w obszarze modelowania szeregów czasowych

Wymagania

  • Podstawowa znajomość języka Python pozwalająca na swobodne pisanie prostego kodu
  • Ogólna wiedza z zakresu matematyki i statystyki

Zalety

  • Szeroki zakres tematyczny obejmujący zarówno klasyczne metody statystyczne, jak i techniki uczenia maszynowego
  • Dokładnie poznanie najważniejszych używanych w praktyce metod
  • Praktyczne podejście do nauki poprzez ćwiczenia i przykłady na różnych problemach
  • Wykorzystanie Pythona, jednego z najpopularniejszych języków programowania w analizie danych

Cele szkolenia

  • Zrozumienie podstawowych pojęć związanych z szeregami czasowymi, w tym stacjonarności, sezonowości i różnicowania i metodologii pracy z nimi
  • Nauka budowania i stosowania najważniejszych statystycznych modeli szeregów czasowych
  • Zdobycie wiedzy na temat sposobu stosowania klasycznych algorytmów uczenia maszynowego w modelowaniu szeregów czasowych oraz praktycznych technik inżynierii cech
  • Nauka łączenia modeli statystycznych z algorytmami uczenia maszynowego w celu zwiększania skuteczności predykcji

Program

Wprowadzenie do modelowania szeregów czasowych

  • Definicje podstawowych pojęć: stacjonarność, sezonowość, różnicowanie
  • Różne podejścia do modelowania szeregów
  • Metodologia pracy z szeregami czasowymi
  • Metodologia ewaluacji jakości predykcji
  • Cele i założenia biznesowe w modelowaniu szeregów

Statystyczne modele szeregów czasowych

  • Dekompozycja szeregu
  • Wygładzanie wykładnicze
  • Autokorelacje i częściowe autokorelacje
  • Modelowanie autoregresyjne
  • Model ARIMA i jego rozszerzenia (SARIMA, SARIMAX)
  • Transformacje danych poprawiające dopasowanie modeli
  • Dobór hiperparametrów modeli

Model predykcyjny Prophet

  • Modelowanie wartości szeregu jako funkcja czasu - mechanizm działania, zalety i ograniczenia tego podejścia
  • Mechanizm uwzględniania świąt i anomali
  • Dostrajanie elastyczności modelu
  • Automatyczne wykrywanie punktów zmiany trendu

Uczenie maszynowe w predykcji szeregów czasowych

  • Mechanizm działania klasycznych algorytmów uczenia maszynowego
  • Definicja zmiennej celu
  • Praktyczna inżynieria cech szeregu czasowego na potrzeby algorytmów uczenia maszynowego
  • Łączenie modeli statystycznych i algorytmów uczenia maszynowego

Podobne szkolenia